MATH 54 - MOCK MIDTERM 3 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}. Write your answers in the box below!

NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) TRUE If A is similar to B, then $\operatorname{det}(A)=\operatorname{det}(B)$
(If A is similar to B, then $A=P B P^{-1}$ for some P, so $\operatorname{det}(A)=$ $\left.\operatorname{det}\left(P B P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(B) \operatorname{det}\left(P^{-1}\right)=\operatorname{det}(B)\right)$
(b) TRUE If A is a 3×3 matrix with eigenvalues $\lambda=1,4,0$, then A is diagonalizable
(A is a 3×3 matrix with 3 distinct eigenvalues)
(c) FALSE If A is a 3×3 matrix with eigenvalues $\lambda=1,4,0$, then A is invertible
(0 is an eigenvalue of A, so by the IMT A is not invertible)
(d) TRUE If A is a 4×4 matrix with eigenvalues $\lambda=1,2,2,3$, then $\operatorname{det}(A)=12$
($\operatorname{det}(A)$ is the product of the eigenvalues of A, including multiplicities, so here $\operatorname{det}(A)=1 \times 2 \times 2 \times 3=12$)
(e) FALSE If λ is an eigenvalue of A, then $\operatorname{Nul}(\lambda I-A)$ could be $\{0\}$.
(by definition an eigenvalue λ is a number such that $A \mathbf{v}=\lambda \mathbf{v}$, that is $(A-\lambda I) \mathbf{v}=\mathbf{0}$, hence $\operatorname{Nul}(\lambda I-A) \neq\{0\}$ because it contains \mathbf{v})
2. (10 points) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!
(a) TRUE If A is diagonalizable, then A^{2} is diagonalizable

Since A is diagonalizable, there exists a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$. But then:

$$
A^{2}=P D P^{-1} \not \supset D P^{-1}=P D^{2} P^{-1}
$$

And this is of the form $\widetilde{P} \widetilde{D} \widetilde{P}^{-1}$, where $\widetilde{P}=P$ and $\widetilde{D}=D^{2}$, which is diagonal!
(b) FALSE If A has only one eigenvalue, then A is not diagonalizable

For example, let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. It is diagonalizable because it is a diagonal matrix, but it only has one eigenvalue, $\lambda=1$.
3. (30 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
8 & -4 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

Eigenvalues:

$\operatorname{det}(\lambda I-A)=\left|\begin{array}{cccc}\lambda-3 & 0 & 0 & 0 \\ 0 & \lambda-3 & 0 & 0 \\ -8 & 4 & \lambda-7 & 0 \\ 0 & 0 & 0 & \lambda-7\end{array}\right|=(\lambda-3)(\lambda-3)(\lambda-7)(\lambda-7)=(\lambda-3)^{2}(\lambda-7)^{2}=0$
Which gives $\lambda=3,7$
Eigenvectors:
$\lambda=3:$
$\operatorname{Nul}(3 I-A)=N u l\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -8 & 4 & -4 & 0 \\ 0 & 0 & 0 & -4\end{array}\right]=N u l\left[\begin{array}{cccc}2 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
But then $2 x-y+z=0$ and $t=0$ gives $x=\frac{y}{2}-\frac{z}{2}$ and $t=0$, so:

$$
\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{y}{2}-\frac{z}{2} \\
y \\
z \\
0
\end{array}\right]=y\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right]
$$

Hence:

$$
\begin{aligned}
& \operatorname{Nul}(3 I-A)=\operatorname{Span}\left\{\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0
\end{array}\right]\right\} \\
& \underline{\lambda}=7:
\end{aligned}
$$

$$
N u l(7 I-A)=N u l\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
-8 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=N u l\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=N u l\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

But then $x=0$ and $y=0$, so:

$$
\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
z \\
t
\end{array}\right]=z\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence:

$$
\operatorname{Nul}(7 I-A)=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Answer:

$$
D=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right], P=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note: Another acceptable answer is:

$$
D=\left[\begin{array}{llll}
7 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right], P=\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 2 & 0 \\
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

4. (30 points) Solve the following system $\mathbf{x}^{\prime}=A \mathbf{x}$, where:

$$
A=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Eigenvalues:

$$
\operatorname{det}(\lambda I-A))=\left|\begin{array}{ccc}
\lambda-3 & -1 & 0 \\
-1 & \lambda-3 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-2)\left((\lambda-3)^{2}-1\right)=(\lambda-2)(\lambda-2)(\lambda-4)=(\lambda-2)^{2}(\lambda-4)
$$

$$
\text { Which gives } \lambda=2,4
$$

Eigenvectors:

$\underline{\lambda=2}$
$N u l(2 I-A)=N u l\left[\begin{array}{ccc}-1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]=N u l\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
But then $x+y=0$, so $y=-x$, and so:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
-x \\
z
\end{array}\right]=x\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

And so:

$$
\operatorname{Nul}(2 I-A)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

$\underline{\lambda=4}$

$$
N u l(4 I-A)=N u l\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=N u l\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

But then $x=y, z=0$, and so:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
x \\
0
\end{array}\right]=x\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

And so:

$$
\operatorname{Nul}(4 I-A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
$$

General Solution:

$$
\mathbf{x}(t)=A e^{2 t}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+B e^{2 t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+C e^{4 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

5. (20 points, 10 points each)
(a) (10 points) Use undetermined coefficients to find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Note: You may use the fact that the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is: $\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+B e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Particular solution: Usually you would guess y_{p} to be a constant a, so here:

Guess $\mathbf{x}_{p}(t)=\mathbf{a}=\left[\begin{array}{l}A \\ B\end{array}\right]$
Plug this into $\mathbf{x}_{p}^{\prime}=A \mathbf{x}_{p}+\mathbf{f}$:

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]+\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

which gives us:

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
A+2 B+1 \\
3 B+3
\end{array}\right]
$$

Which gives us: $A+2 B+1=0$ and $3 B+3=0$.
Solving this system of equations (either by using linear algebra or doing it directly), we get $A=1, B=-1$, and so:

$$
\mathbf{x}_{p}(t)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

General solution:
Using this and the Note at the beginning, we get:

$$
\mathbf{x}(t)=\mathbf{x}_{0}(t)+\mathbf{x}_{p}(t)=\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+B e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

(b) (10 points) Use variation of parameters to find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$, where:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \mathbf{f}(t)=\left[\begin{array}{c}
e^{2 t} \\
e^{4 t}
\end{array}\right]
$$

Note: You may use the fact that the general solution to $\mathrm{x}^{\prime}=A \mathbf{x}$ is: $\mathbf{x}_{0}(t)=A e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+B e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Particular solution:
Using the Note, we get that the Wronskian matrix is:

$$
\widetilde{W}(t)=\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]
$$

Now suppose $\mathbf{x}_{p}(t)=v_{1}(t)\left[\begin{array}{c}e^{t} \\ 0\end{array}\right]+v_{2}(t)\left[\begin{array}{l}e^{3 t} \\ e^{3 t}\end{array}\right]$, then use the variation of parameters formula:

$$
\widetilde{W}(t)\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\mathbf{f}(t)
$$

Here we get:

$$
\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
e^{2 t} \\
e^{4 t}
\end{array}\right]
$$

So:

$$
\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]^{-1}\left[\begin{array}{l}
e^{2 t} \\
e^{4 t}
\end{array}\right]
$$

But

$$
\left[\begin{array}{cc}
e^{t} & e^{3 t} \\
0 & e^{3 t}
\end{array}\right]^{-1}=\frac{1}{e^{4 t}}\left[\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
0 & e^{t}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & -e^{-t} \\
0 & e^{-3 t}
\end{array}\right]
$$

(here we used the formula $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$)
Hence:

$$
\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & -e^{-t} \\
0 & e^{-3 t}
\end{array}\right]\left[\begin{array}{l}
e^{2 t} \\
e^{4 t}
\end{array}\right]=\left[\begin{array}{c}
e^{t}-e^{3 t} \\
e^{t}
\end{array}\right]
$$

Hence $v_{1}^{\prime}(t)=e^{t}-e^{3 t}$, so $v_{1}=e^{t}-\frac{1}{3} e^{3 t}$, and $v_{2}^{\prime}(t)=e^{t}$, so $v_{2}(t)=e^{t}$ and finally:

$$
\begin{aligned}
\mathbf{x}_{p}(t) & =v_{1}(t)\left[\begin{array}{c}
e^{t} \\
0
\end{array}\right]+v_{2}(t)\left[\begin{array}{l}
e^{3 t} \\
e^{3 t}
\end{array}\right] \\
& =\left(e^{t}-\frac{1}{3} e^{3 t}\right)\left[\begin{array}{c}
e^{t} \\
0
\end{array}\right]+e^{t}\left[\begin{array}{c}
e^{3 t} \\
e^{3 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{2 t}-\frac{1}{3} e^{4 t} \\
0
\end{array}\right]+\left[\begin{array}{c}
e^{4 t} \\
e^{4 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{2 t}+\frac{2}{3} e^{4 t} \\
e^{4 t}
\end{array}\right]
\end{aligned}
$$

General solution:

$$
\begin{aligned}
\mathbf{x}(t) & =\mathbf{x}_{0}(t)+\mathbf{x}_{p}(t) \\
& =A e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+B e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
e^{2 t}+\frac{2}{3} e^{4 t} \\
e^{4 t}
\end{array}\right]
\end{aligned}
$$

